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Abstract
We focus on the problem of an impurity-free billiard with a random
position-dependent boundary coupling to the environment. The response
functions of such an open system can be obtained non-perturbatively from
a supersymmetric generating functional. The derivation of this functional is
based on averaging over the escape rates and results in a nonlinear ballistic
σ -model, characterized by system-specific parameters. Particular emphasis is
placed on the ‘whispering gallery modes’ as the origin of surface diffusion
modes in the limit of large dimensionless conductance.

PACS number: 05.45.Mt

1. Introduction

Wave billiards with smooth boundary walls find a wide variety of applications in condensed
matter physics [1], microwave and acoustic chaology [2]. For chaotic transport in nano-
size two-dimensional electronic systems such as quantum dots, wires, junctions and corrals,
billiards serve as convenient theoretical models for a confined electronic gas. Chaos in a cavity
might be attributed to the presence of impurities or to the properties of the boundary itself. A
review of closed billiard dynamics can be found in [3]. Convex hard-wall cavities open to the
environment are also well studied within the semiclassical approximation [4].

An intermediate situation arises when one allows for a small but finite coupling to the
outside world all around the boundary. Furthermore, if this coupling is described by a
random set of coupling coefficients to a large number of ideal leads, the resulting system
acquires a natural statistical description [5]. Indeed, in studies of nanostructures one typically
aims at the statistical properties of various response functions, computed through the cavity
Green’s function. In experiments, the statistics are obtained via spectral averaging or from an
ensemble of different boundary configurations, corresponding to the same spectral density. In
both regular and chaotic cavities, the most well-studied statistical ensemble is the one defined
over the different configurations of the internal impurities [6–9].
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The notion of a statistical ensemble does not come naturally for the analytical study of
a billiard with no internal scattering potential, no magnetic impurities or random magnetic
field. The scattering, which in this case takes place exclusively at the boundary, is the source
of stochasticity. In the simplest case the scattering is specular, but it can also be diffusive, as
in [10]. Furthermore, the scattering may be accompanied by the escape of scattered waves
into the exterior [5], as, for example, in quantum dots [11] or quantum corrals [12]. In this
paper, we present a more detailed description of the method proposed in [5]. The model
system we study is a billiard weakly attached to the large number of ideal infinite leads [5].
For simplicity and clarity of presentation we consider one open channel in each waveguide,
with a coupling coefficient which is Gaussian distributed around a small, but non-zero mean.
The mean and the width of the coupling coefficient distribution are assumed to vary smoothly
with the position of the lead on the perimeter.

For this dot, we construct the supersymmetric generating functional [6, 9] and performing
the average over the ensemble of realizations of coupling coefficients, we obtain a ‘surface’
nonlinear σ -model (NLσ M). Its ‘diffusion’ modes are confined to the boundary of the
dot. In convex nearly closed billiards these correspond to the so-called whispering gallery
modes (WGM), which are high angular momentum modes corresponding to the classical
trajectories running alongside the billiard walls. The WGM are exponentially less likely to
escape compared to the modes with incidence directions close to the lead normals, as can be
inferred, for example, from [13]. Thus, the response functions at very large times are expected
to be dominated by these modes, and hence can be non-perturbatively calculated from our
supersymmetric functional.

Some of the technical tools we employ, such as the non-Hermitian effective Hamiltonian,
have been frequently used along with random matrix theory (RMT) [14–16]. The use of
RMT implies a restriction to the universal regime. Here, we pursue a description of the
nonuniversal regime of the billiard dynamics, thus covering a much broader energy range
than is possible with RMT. We are also interested in spatially dependent characteristics of the
system, inaccessible via RMT.

The assumption of only one open channel is not essential. The generalization of our
approach to an arbitrary number of open channels is straightforward. The choice of random
Gaussian distribution of the channel strengths is in fact quite realistic; the actual values of
couplings (and the number of open channels) are not known in general [17]. It is usually
argued, at least in situations where the RMT is applicable, that quantitative results do not
depend on the coupling being random or constant [14]. For our development, however, the
randomness is essential as we briefly explained above.

We note that our model applies, mutatis mutandis, to a system with local or extended
sources of damping [17, 18]. Besides quantum dots [11], there are other mesoscopic billiards
which fall into this category, such as quantum and optical corrals [12, 19], optical resonant
cavities [20] and the artificial atoms proposed in [21]. Here also we expect the WGM to play
an important role in the long-time Green’s functions. The dependence of escape rate on the
angular momentum, important in both optical and electronic systems, is also incorporated in
our model.

Finally, weak interactions in nanostructures with large dimensionless conductance creates
an additional motivation for our study. For a ballistic cavity, in which electronic interactions
are of interest, while the shape is not, the convex smooth-wall billiard represents a sufficient
starting point. It might be possible to use the results of our present analysis in the large-N
approach of [22] to the interacting ballistic case. We also note in passing that the fundamental
problem of constructing a σ -model for a closed, impurity-free ballistic billiard has proven
to be technically challenging [10, 23–25]. Our work shows that a random coupling to the
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environment acts as a natural regularizer and allows us to circumvent many of the technical
difficulties.

The plan of this paper is as follows. Section 2 reviews the procedure for ‘integrating
out’ the leads to arrive at a non-Hermitian Hamiltonian which describes electronic scattering
in a quantum dot. In section 3, we construct the supersymmetric generating functional for
the correlation functions and carry out the ensemble average, introducing a supermatrix field
for each lead to decouple supervector fields. The continuous model resulting in the limit of
large leads number is analysed in section 4. We demonstrate how a Born–Oppenheimer-like
approximation [26] can be employed in the solution of the effective problem, which results
from the saddle point evaluation of superintegral. This is done in section 5. We complete the
derivation of the surface diffusion NLσM in section 6 and present our summary in section 7.

2. Effective non-Hermitian Hamiltonian

It is common in mesoscopic physics to study open systems using their closed counterparts
and vice versa. The eigenfunction structure of closed dots affects the transport properties
of the open dots, while the leads attached to the dot can change the nature of the dynamics
from regular to chaotic [27]. In the RMT context, the scattering approach [14] to mesoscopic
billiards relies on the decomposition of the system into internal and external subparts. The
internal is described by N bound states, while the external by M channel states propagating
along the hard wall leads to infinity. To set up the analysis one introduces (i) the N × N

internal Hamiltonian Hin, (ii) M × M S-matrix, which relates incoming and outgoing wave
amplitudes in the asymptotic region:

ψi,n = δjiψ
incoming
i,n +

Mj∑
m=1

S(ji)
mn ψ

outgoing
j,m ,

where i, j specify leads and m, n specify channels and (iii) express S-matrix in terms of Hin

and N × M matrix W , which couples the subparts S = I − 2π iW †(E − Heff)
−1W, with

Heff = Hin − iπWW †. This relation of S-matrix to the effective Green’s function (E −Heff)
−1

is the building block of the Hamiltonian approach to the system’s statistics in the universal
(RMT) regime, i.e., the regime independent of the details of the underlying classical dynamics
[14]. The non-Hermitian random matrices have been the subject of numerous works on
quantum chaotic scattering (see, for example, [16] and references therein).

Similar steps lead to the generalization of the effective non-Hermitian Hamiltonian in the
nonuniversal regime, as was done in a thick wire in [28] and for a disordered quantum dot, in
which electrons confined by a hard wall potential can escape into leads, in [29].

In full analogy with the RMT problem one can take the same approach to our problem
involving open ballistic dot. For completeness, we reproduce the main steps carried out in
[29], noting that we deal with a two-dimensional clean electronic system.

In order to study the Green’s functions G

(E ± iε − H0)G
R,A(r, r′) = δ(r − r′), (1)

corresponding to the dot-plus-leads Hamiltonian

H0 =
(

p − e

c
A

)2
, (2)

we introduce the cross-sectional surfaces Cn perpendicular to the walls of the leads close to
the place of their attachment to the dot. Then, we reformulate the problem by specifying the
boundary conditions on these surfaces, thus eliminating the leads at the expense of modifying
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the Hamiltonian of the system. First, we introduce auxiliary retarded and advanced Green’s

functions G
R,A

(r, r′) for each lead, satisfying equation (1) inside the region of the lead bounded

by the section Cn. The boundary condition at Cn is the only difference between G
R,A

(r, r′)
and GR,A(r, r′). The former vanishes at this boundary. Considering GR,A(r, r′), such that r
and r′ belong to the regions on the different sides from the section Cn, we make use of the
following identity (current conservation):

∇r [(G
A
(r, r′′))∗vrG

R(r, r′) + GR(r, r′)(vrG
A
(r, r ′′))∗] = 2 iδ(r − r′′)GR(r, r′), (3)

where vr = −i(∇r + eA/c)/m. To arrive at the current conservation relation (equation (3)),

we combine definitions of both GR and G
A

(equation (1)), by multiplying them with GR(r, r′)
and subtracting from each other. Then, integration with respect to r-coordinates taken over
the volume of the lead results in

GR(r′′, r′) = − i

2

∫
Cn

(xn · vr )(G
A
(r, r′′))∗GR(r, r′) dr, (4)

upon application of boundary condition on G
A
(r, r′′). Here, xn is the unit normal to Cn. Next,

we apply the velocity operator vr ′′ to both sides of equation (4) and pick r′′ = y on the cross
section Cn to get

(xn · vy)G
R(y, r′) =

∫
Cn

Bn(y, r)GR(r, r′) dr, (5)

where

Bn(y, r) = i

2
(xn · vy)(xn · vr )G

R
(y, r),

and we used (G
A
(r, r′′))∗ = G

R
(r′′, r). Note, that the functions Bn(y, r) are completely

determined by the properties of the leads, which we assumed to be ideal. Thus, the ‘dot-plus-
leads’ system governed by equation (1) is now reduced to the dot only, governed by the same
equation (1) and boundary conditions specified by equation (5). We also note that it is real
part of a function Bn(y, r) that is related to the flux carried into the leads by the electronic
states. To simplify the boundary conditions, we modify the Hamiltonian of the system even
further according to

H = H0 ∓ i

2

N∑
n=1

B̂nδCn, (6)

where δCn is a surface δ-function, defined via
∫

δCn�(r) dr = ∫
Cn

�(r) dr, and B̂n�(r) =∫
Cn

�Bn(r, r′)�(r′) dr′, with �Bn(r, r′) = γnvnϕn(r)ϕn(r′). To compacticify the formulae of
the next sections we also assume that each of the N leads contains at most one open channel.
Thus, we end up looking for the Green’s functions of the effective problem

(E − H)GR,A(r, r′) = δ(r − r′), (7)

associated with the Neumann boundary conditions

(xn · vr )G
R,A(r, r′)|Cn+0 = 0, (8)

where the derivatives are taken from the side of the lead (which is indicated by Cn + 0).
The second term in Hamiltonian (equation (6)) describes the finite escape probability for the
electrons colliding with the boundary. Now we are ready to proceed with the construction of
the σ -model along the conventional lines developed for closed systems [9]. Note that boundary
condition given by equation (8) ensures that system is effectively closed, i.e. component of
the current, which is normal to the boundary, vanishes.



Ballistic dynamics of a convex smooth-wall billiard with finite escape rate along the boundary 10847

3. Supersymmetric generating functional

Next we construct the generating functional for both retarded and advanced Green’s functions
for Gaussian distributed dimensionless coupling coefficients γn. These coefficients are related
to sticking probabilities and transmission coefficients, frequently used within the Hamiltonian
approach to chaotic scattering [14] to compute statistical distributions of the resonance widths,
delay times and related characteristics. A detailed discussion of the physical meaning of these
coefficients can be found in [2, 17, 18, 30] and in references therein. In order to perform
non-perturbative calculations of these averages in the nonuniversal regime we first construct
the supersymmetric functional Z [9, 31]. Any correlator of the dot Green’s functions can be
later obtained from it by differentiation with respect to sources J [6] as long as we know the
average Z[J ] over the γ -ensemble.

We can assume the magnetic field (equation (2)) to be vanishingly small and remove
it from consideration. Its role is reduced to breaking the time reversal symmetry and
justifying the use 4-component supervectors �(r)T = {S1(r), χ1(r), S2(r), χ2(r)} in the
supersymmetric functional. The generalization of our formalism to other symmetry classes is
quite straightforward and will require doubling the space [9]. It is convenient to express the
coupling coefficients as a sum of constant and stochastic parts: γn = γ̂n + γ̃n. For the statistics
of γ̃n, we assume that 〈γ̃n〉 = 0, 〈γ̃nγ̃m〉 = x2

nδnm; all higher moments factorize into second
moments. We indicate averaging over random couplings to the leads by the shorthand notation
〈· · ·〉γ̃ . Then, we ‘eliminate the leads’ [29], passing to the Hamiltonian given by equation (6).

In terms of supervectors �(r) and supermatrices L = diag{1, 1−1, 1},
 = diag{1, 1−1,

−1} [31], the generating functional Z[J ] is written down as follows:

〈Z[J ]〉γ =
∫

d�∗ d� e−L[�]〈e−Lδ [�]〉γ̃ , (9)

L[�] = i
∫

�†(r)ĤJ L�(r) dr +
1

2

N∑
n=1

vnγ̂n

∫
Cn

�†(yn)ϕn(yn)ϕn(y
′
n)
L�(y ′

n),

Lδ[�] =
N∑

n=1

γ̃nvn

2

∫
Cn

�†(yn)ϕn(yn)ϕn(y
′
n)
L�(y ′

n),

with

ĤJ =
(

− ∇2

2m
− E

)
I4 + iε
 + J,

where ε is infinitesimally small, ϕn(y) = √
2/dn sin(πy/dn) (for hard-wall lead of width dn).

Here,
∫
Cn

stands for a double integration over yn and y ′
n, the transverse coordinates along the

cross section Cn. The exact form of the source supermatrix,

J = diag{J1(r), J2(r), J1(r), J2(r)},
is dictated by the choice of the physical quantity we eventually wish to calculate.

Averaging over γ̃n produces

〈e−Lδ [�]〉γ =
〈

1 +
1

8

N∑
n=1

x2
nv

2
n

{∫
Cn

�†(yn)Lϕn(yn)ϕ
∗
n(y

′
n)�(y ′

n)

}2

+ · · ·
〉

γ̃

. (10)

This step towards constructing supersymmetric NLσM for our system is no more difficult than
in the problems requiring averaging over impurities or random magnetic field. As we shall see
below, it results in the coupling of the effective field with the source of boundary transmission.
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4. Effective problem for a smooth convex boundary

Next we carry out the Hubbard–Stratonovich transformation to decouple the ‘interaction’
terms (equation (10)) which entered the action of equation (9) after averaging. The procedure,
involving supermatrix fields Qn, is explained in appendix A and leads to

〈Z[J ]〉γ =
∫ ∏

n

DQn

∫
d�∗d� e−L[�] exp

N∑
n=1

{
xnvnm

2

∫
Cn

�†(yn)L

×ϕn(yn)ϕ
∗
n(y

′
n)�(y ′

n)

∫
Cn

Qn(y
′′
n, y ′′′

n )ϕn(y
′′
n)ϕ∗

n(y
′′′
n )

− m2

2

(∫
Cn

Qn(yn, y
′
n)ϕn(yn)ϕ

∗
n(y

′
n)

)2
}

. (11)

Next, we make further simplifications by setting dn = d and distributing the large number
of narrow leads dn = d 	 P (where P is perimeter of the dot), close to each other all
around the boundary. In this limit, we can approximately write ϕn(yn)ϕ

∗
n(y

′
n) 
 2/d. These

two model assumptions are not essential for subsequent analysis, although they do make it
more transparent. The distribution of the leads coupling coefficients can be chosen piecewise
continuous, while widths can be given as a set of input parameters to the problem at hand
together with γ̂n, xn and vn.

Then, we make use of the mean value theorem for each of the
∫
Cn

integrals, provided all
the integrands are smooth functions of yn. The resulting sum in the exponent of equation (11)
can be combined into a single integral over the arclength s, ranging from 0 to P, which runs
along the boundary, defined in polar coordinates as r = R(s), producing

〈Z[J ]〉γ =
∫

DQ(s)

∫
d�∗(r, θ) d�(r, θ) e−L[�]

× exp

{
2md

∫ P

0
x̃(s)�†(R(s), s)LQ(s)�(R(s), s) ds − 2m2d

∫ P

0
Q2(s) ds

}
,

where x̃(s) = x(s)v(s) and both band velocity v(s), mean γ̂ (s) and rms x(s) of the coupling
strength are now smooth functions of arclength. The corresponding changes in the term
L[�] are made accordingly. Upon carrying out the �-integration, we arrive at the following
representation of the generating functional in polar coordinates r = (r, θ):

〈Z[J ]〉γ =
∫

DQ exp Str

[
−2m2d

∫
dr dr′Q2(s)δP δ(r − r′)

− ln

{(
−iĤ0 +

v(s)γ̂ (s)

d

δP

)
δ(r − r′) − mdx̃(s)

2
Q(s)δP δ(r − r′)

}
− ln(I4 + ε
G(r, r′) + G(r, r′)J (r))

]
, (12)

where δP is a perimeter delta-function and the supermatrix ‘Green’s function’ G is determined
from {

Ĥ0 − i2mx̃(s)d

(
Q(s) − γ̂ (s)

2x(s)md



)
δP

}
G(r, r′) = iδ(r − r′), (13)

and Ĥ0 = ĤJ (J = 0). Thus, we reduced the generating functional for our system to the
integral over the supermatrix superfield with boundary support. We have

〈Z[J ]〉γ =
∫

DQ exp(F [Q] + FJ [G]), (14)
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with the free energy

F [Q] = Str
∫

dr dr′{−2m2dQ(s)2δP δ(r − r′) + ln −iG−1(r, r′)},

and symmetry breaking terms

FJ [G] = −Str
∫

ln(I4 + ε
G(r, r′) + G(r, r′)J (r)) dr dr′.

In order to reduce our generating functional (equation (14)) to a NLσM, we employ the
saddle-point condition, which in our case reads

Qsp(s) = x̃(s)

2m
G(R(s), R(s), s, s,Qsp(s)). (15)

We assume the saddle-point solution to be diagonal: Qsp(s) = Q0(s)
. To proceed with the
analysis of fluctuations, one needs to determine both Q0(s) and the diagonal Green’s function
supermatrix Gsp(r, r′). Thus, by combining equations (13) and (15) with the assumption about
saddle-point structure we mapped the original problem with random boundary condition onto
an effective problem specified by the differential equation:

1

2m
(∇2 − κ2)G(r, r ′, θ, θ ′, κ2) = − iδ(r − r ′)δ(θ − θ ′)

r
, (16)

where κ2 = −2mE, with associated boundary conditions

∂

∂r
G(r, r ′, θ, θ ′, κ2)|S− = i

f (s)

R(s)
G(r, r ′, θ, θ ′, κ2)|S− , (17)

∂

∂r
G(r, r ′, θ, θ ′, κ2)|S+ = 0, (18)

where f (s) = m2x̃(s)Q̃0(s)R(s)d, S−, S+ are the inner and the outer surfaces of the dot and
Q̃0(s) = Q0(s) − γ̂ (s)/(2x(s)md).

5. Born–Oppenheimer-like approximation

To construct the Green’s function of equation (16) we employ the technique of [32], which was
also used in [5] for a circular billiard. In the latter case, the corresponding Green’s function
reads

Gcircle(r, r
′, θ, θ ′, κ2) = im

π

∞∑
n=−∞

In(κr<){anIn(κr>) + Kn(κr>)} ein(θ−θ ′), (19)

with r> (r<) is a maximum (minimum) of r and r ′, In and Kn are modified Bessel functions,
respectively, and the coefficients an are chosen to ensure the boundary condition. The
summation in equation (19) is replaced with integration, while Bessel functions are replaced
with their uniform approximations [32].

For a generic convex smooth-wall billiard, a similar expansion is possible with the help
of the recently proposed Born–Oppenheimer-like approximation [26]. The method used in
[26] assumes that the angular variation of x(s), f (s), etc is slow and enables one to determine
certain classes of eigenstates quite accurately. Guided by the example of circular billiard,
and the fact that WGM have the longest lifetime, we focus our attention on the limit of large
angular momentum.
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The Green’s function (equation (19)) was build from two radial solutions of equation (16)
and angular harmonics. In the case of a generic billiard, the angular ‘part’ of the eigenstate is
obtained from WKB solution of slow-variable equation [26],

ψ(s) = exp

{
iλ

∫ s F (s)

R(s)
ds

}
while the radial ‘part’ is given by the linear combination of Il(s)(κrs) and Kl(s)(κrs). Here,
angular momentum ‘index’ is parametrized as l(s) = λF(s), rs is a local radial coordinate,
computed from the local centre of curvature [26]. Eigenvalues λ are determined from arclength

quantization condition (ψ(0) = ψ(P )): λn = 2πn
/(

F(s)

R(s)

)
P . Here and below we use òverbar’

to denote the perimeter average: R = ∫ P

0 R(s)ds/P , f = ∫ P

0 f (s) ds/P , etc. Note that for
dimensionless quantities we will not use overall factor 1/P . The explicit form of F(s) can
be found from the radial quantization condition [26]. Below we consider F(s) to be known.
Thus, the Green’s function for the effective problem given by equations (16), (17) can be
approximated as

G(r, r ′, θ, θ ′, κ2) = imR(s)

P

∞∑
n=−∞

IλnF (s)(κrs<)
{
anIλnF (s)(κrs>) + KλnF(s)(κrs>)

}
× exp

{
iλn

∫ s

s ′

F(s)

R(s)
ds

}
, (20)

with

an(s) = −if (s)KλnF(s)(κR(s)) + κR(s)K ′
λnF (s)(κR(s))

if (s)IλnF (s)(κR(s)) − κR(s)I ′
λnF (s)(κR(s))

.

This expression does not hold far from the boundary, but it suits our purposes. For example,
it can be used to determine saddle-point solution Q0(s). We have, at the billiard boundary,

G(R(s), R(s), s, s ′, κ2) = imR(s)

P

∞∑
n=−∞

IλnF (s)(κR(s))

if (s)IλnF (s)(κR(s)) − κR(s)I ′
λnF (s)(κR(s))

× exp

{
iλn

∫ s

s ′

F(s)

R(s)
ds

}
,

Then, Q0(s) is determined by the stationary point condition (equation (15))

i
x̃(s)R(s)

2P

∞∑
n=−∞

IλnF (s)(κR(s))

if (s)IλnF (s)(κR(s)) − κR(s)I ′
λnF (s)(κR(s))

= Q̃0(s) +
γ̂ (s)

2x(s)md
. (21)

Dropping the imaginary part of Q̃0(s), we set g̃(s) = κR(s), and proceed as follows. We
evaluate the sum over n in equation (21) asymptotically in the limit: g̃(s) � 1, f (s)/̃g(s) ∼ 1,
by replacing it with integral over corresponding continuous variable. Following the technique,
described in [32], and illustrated in appendix B for a more involved calculation, we use uniform
approximation for the Bessel function and its derivative [33], carry out the integration and
rewrite equation (21) as

x̃(s)R(s)(F (s)/R(s))

2F(s)
√

f (s)2 − g(s)2
= Q̃0(s) +

γ̂ (s)

2x(s)md
,

after the substitution g̃(s) → −ig(s) (κ → −ik), to the leading order in 1/g(s). This equation
can be now solved numerically yielding f (s) (or Q̃0(s)) for any prescribed set of parameters
of the problem.
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6. Ballistic nonlinear σ-model

Having determined the relation between the Green’s function G and saddle-point value
of superfield Q, we come back to further analyse the generating functional specified by
equation (14). As a final step in derivation of NLσM we have to expand the action F [Q] up to
quadratic order around the extremum and include first variation of symmetry breaking terms
in FJ [G]. Observing that F [Qsp] = 0, we turn to the fluctuations of Q, which decompose
into a transverse piece δQ(t) (along the saddle-point manifold [9]) and a longitudinal piece
δQ(l) (orthogonal to the saddle-point manifold). We focus on the transverse part of the action,
the part anticommuting with the 
-like saddle-point solution. Our goal is to demonstrate that
in the absence of symmetry breaking terms transverse fluctuations are massless (Goldstone)
modes of the theory. The purely transverse terms are given by [9]

Ft [δQ] = −4m2d Str
∫ P

0
(δQ(t)(s))2 ds + (md)2Str

∫ P

0

∫ P

0
G(Q0(s))G(−Q0(s))

× x̃(s)̃x(s ′)δQ(t)(s)δQ(t)(s ′) ds ds ′.
In view of the developments of the previous section, we can expand deviations of Q in
approximate angular eigenstates: δQ(t)(s) = ∑∞

l=−∞ Q
(t)
l exp

{
iλl

∫ s dsF (s/R(s))
}
, and,

setting G (Q0) = G, and G (−Q0) = G̃, we obtain

Ft [δQ] = −4m2d Str
∑
l,n

∫ P

0
δQ

(t)
l δQ(t)

n exp

(
i (λl + λn)

∫ s F (s)

R(s)
ds

)
ds

+ (md)2Str
∑
l,n

δQ
(t)
l δQ(t)

n

∫ P

0
ds

∫ P

0
ds ′GG̃x̃(s)̃x(s ′)

× exp

(
iλl

∫ s F (s)

R(s)
ds + iλn

∫ s ′
F(s)

R(s)
ds

)
. (22)

Our intermediate goal now is to get a Ward-like identity, which would allow us to evaluate
massive part of the transverse action. At this point, we consider equation (13) for both Green’s
functions ( ∇2

2m
− i

f (s)

2mR(s)
δP − κ2

2m

)
G = i

r
δ(r − r ′)δ(θ − θ ′), (23)( ∇2

2m
+ i

f (s)

2mR(s)
δP − κ2

2m

)
G̃ = i

r
δ(r − r ′)δ(θ − θ ′), (24)

and multiply equation (23) by G̃h(s, s ′) and equation (24) with Gh(s, s ′). We are free to
choose function h(s, s ′) to behave as we like inside the billiard, because only the value of this
function at the boundary matters for manipulations in equation (22). In particular, we may
require that h slowly decay to zero in the radial variable as we move away from the boundary.
Since the radial rate of variation is approximately 1/R, while the angular rate is 1/λF (where
λF is a Fermi wavelength), we neglect all radial derivatives in the subsequent analysis, which
is correct to leading order in R/λF . Next, we subtract one equation from the other, integrate
the resulting expression over the area of the dot D (including the boundary: 0 < r < R+(s))
and set the remaining free radial coordinate to R(s) to get∫

V

(hG̃∇ · ∇G − hG∇ · ∇G̃) dτ = 2i
∫ P

0
dsf (s)h(s, s ′)

×G(R(s), R(s ′), s, s ′)G̃(R(s), R(s ′), s, s ′) + 2 imh(s ′, s ′)
×(G̃(R(s ′), R(s ′), s ′, s ′) − G(R(s ′), R(s ′), s ′, s ′)). (25)
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Note that according to the saddle-point condition (equation (15))

G̃(R(s), R(s), s, s) − G(R(s), R(s), s, s) = −2m
Q̃0(s)

x̃(s)
, (26)

which might be used in the last line in equation (25). Furthermore, one can transform the
left-hand side of the equation (25) by making use of Gauss’s theorem for the domain D (with
boundary ∂D)∫

D

(hG̃∇ · ∇G − hG∇ · ∇G̃) dτ

=
∫

∂D

h(G̃∇G − G∇G̃) · dσ −
∫

D

(∇(hG̃) · ∇G − ∇(hG) · ∇G̃) dτ. (27)

Application of the boundary conditions (equation (18)) to equation (27) makes the surface
integral vanish. It remains to evaluate the area integral on the right-hand side of equation (27),
which we now substitute into equation (25) and obtain, neglecting the terms with radial
derivatives of h,∫ 2π

0

∂h(s, s ′)
∂θ

dθ

∫ R(s)

0

dr

r

(
G̃

∂

∂θ
G − G

∂

∂θ
G̃
)

+ 4 im2h(s ′, s ′)
Q̃0(s)

x̃(s)
= 2i

∫ P

0
dsh(s, s ′)G̃G,

(28)

where we used equation (26). The boundary value of function h is completely at our discretion.
We select

h(s, s ′) = −i(md)2
∑
l,n

x̃(s)̃x(s ′)
f (s)

exp

(
iλl

∫ s F (s)

R(s)
ds + iλn

∫ s ′
F(s)

R(s)
ds

)
δQ

(t)
l δQ(t)

n .

Then we integrate both sides of equation (28) with respect to s ′ along the boundary of the
billiard and substitute the result together with h in each term of the sum in the second term of
Ft [δQ] (equation (22)).

We observe that the massive contribution coming from variation of Q(s)2 (the first term
on the right-hand side of equation (22)) will be cancelled by the second term on the left-
hand side of equation (28). The surviving linear in δQ(t) term proportional to γ̂ (s) (cf [5])
will be accounted later, together with the symmetry breaking terms. In addition to that, we
need to demonstrate that massive longitudinal modes δQ(l) are decoupled from the essentially
massless transverse modes. Then, the longitudinal fluctuations around saddle point can be all
integrated out, producing unity due to supersymmetry.

To complete the derivation of NLσM we still have to analyse the remaining part of the
transverse action

Ft [δQ] = Str
∑
l,n

∫ P

0
ds ′

∫ P

0
ds

∫ R(s)

0

∂h(s, s ′)
∂s

R2(s)

(
G̃

∂

∂s
G − G

∂

∂s
G̃
)

dr

r
. (29)

We perform this step using the asymptotic technique, we employed in previous section. After
a straightforward but lengthy procedure, which we allocate to appendix B, we obtain

Ft [δQ] 
 −StrD0

∫ P

0

(
R(s)

F (s)

∂δQ(t)

∂s

)2

ds,

D0 =
(

F

R

)
m4d2x̃

4P

(
x̃FR2g(2g2 + f 2)

f 4
√

f 2 − g2

)
.

(30)

One can use similar set of manipulations for the purely longitudinal and proportional to
δQ(l)δQ(t) + δQ(t)δQ(l) parts of the action, which consist of the fluctuations commuting with
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the saddle-point solution, and therefore contain G2 in the contribution to second variation
coming from the logarithmic term in F [Q] (cf equation (22)). These manipulations enable
us to show that to the considered order in 1/g the longitudinal and transverse modes are
decoupled (the coefficient in front of the δQ(l)δQ(t) + δQ(t)δQ(l) is small compared to the
mass of the longitudinal modes).

To finish the construction of the nonlinear σ -model, we integrate out the longitudinal
modes, set δQ(t) = Q, and expand the symmetry breaking terms FJ [G (Q)] to the lowest
order in J and ε to get

〈Z[J ]〉γ =
∫

DQ e−F [Q],

with the free energy given by

F [Q] = Str
∫

dr dr′
[{

D0

(
R

F

∂Q(s)

∂s

)2

+
γ

xmd
Q(s)


}
δP δ(r − r′)

+
∫

ds ′′(ε
 + J (r))Q(s ′′)a(r, R(s ′′)s ′′; r′, R(s ′′)s ′′)

]
(31)

where

a(r, R(s ′′)s ′′; r′, R(s ′′)s ′′) = i
mdx̃

2
Gsp(R(s ′′)s ′′, r′)Gsp(r, R(s ′′)s ′′)

and we suppressed explicit slow s-dependence everywhere. The free energy given by
equation (31) is the central result of our paper. It displays the surface modes Q(s), which
undergo diffusion and drift, and are coupled to the interior of the dot by the last term.

For the calculation of any physical quantity, expressed via Green’s function correlators
such as, e.g. 〈GR(r, r′)GA(r, r′)〉γ , it is necessary to have actual parametrization for Q(s).
Since basic symmetries of our problem are not any different from these of the corresponding
Q(r)-field of the diffusive problem [6, 9, 31] our supermatrix Q can be parametrized as
suggested in [9, 31].

7. Discussion

We have constructed a non-perturbative framework to analyse one particular realization of
a whole class of nanostructures: a nearly closed system with ballistic internal dynamics
and random losses at the boundary. Our approach uses a natural regularizer, which enables
us to circumvent the technical difficulties of previous approaches to closed ballistic systems
[10, 23–25]. We find that the resulting theory can be characterized by diffusive modes confined
to the boundary and interacting nonlocally with the interior as encapsulated in our main result
(equation (31)). These diffusive modes are identified as WGM, which are exponentially
long-lived compared to other trajectories scattering off the boundary non-tangentially and,
therefore, are anticipated to dominate the long-time behaviour of response functions. We
expect our formalism to be useful whenever a ballistic nanostructure supports such modes.
Note that no RMT assumptions have been made, and our approach is applicable in a broad
energy range and includes the spatial dependence of physical quantities.

We derive our results by treating a ballistic billiard as a scattering system. In particular,
we use an effective non-Hermitian Hamiltonian, which is a common tool in quantum
chaotic scattering. However, the resulting supersymmetric NLσM is fully intended for the
calculations of ‘internal’ characteristics, such as local density of states statistic or correlators
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of eigenfunctions, rather than statistics of reflection or transmission. For that reason, the
escape rate is chosen to be small and distributed along the boundary. In addition, we chose the
coupling part of the non-Hermitian Hamiltonian to be fluctuating, thus defining an ensemble
of billiards with different escape rates. These steps allow us to study ballistic nanostructures
without the introduction of any other regularizer [6, 24]. The simplest realization of such
model is a circular billiard with constant parameters, for which the surface diffusion NLσM
was obtained in [5] using the saddle-point solution. This billiard is also the classical example
of a system supporting WGM.

In this paper, we have extended the results of [5] to show that surface diffusion modes
are present in generic, chaotic, smooth-wall billiard as well. To create an extension to other
chaotic optical and electronic systems, for which WGM are of importance [12, 19–21], one
needs to adapt our procedure to the details of the coupling to the environment. However, for
most mesoscopic structures the wall absorption, which is always present in experiment, can
be adequately modelled by uniformly distributed leads. Furthermore, our model allows us
to add finite number of wide leads if the problem under consideration involves transmission
properties. Other calculations within a similar framework can be performed for systems which
have disorder concentrated at the boundary, e.g. quantum corral composed of different atoms
or artificial atoms proposed in [21] with the random magnitude of the magnetic flux.

As for handling the calculation of correlators of physical quantities one needs to introduce
a difference between two energies ω into the derivation. For the final expression for the free
energy (equation (31)) this means a replacement ε → ε + iω/2. A good starting point can
be the application the perturbative technique described in [37] to the analysis of the 2-point
function in a circular cavity. Assuming Q(θ) (θ being the polar angle) to fluctuate weakly
near the origin Q0
 [5], one can decompose the supermatrix Q(θ) as T −1Q̃(θ)T , where T
are angle-independent pseudounitary supermatrices, which are, in turn, parametrized in terms
of off-diagonal supermatrices W [9, 37]. The perturbation scheme is based on the expansion
of Q(θ) around the saddle-point solution (Q0
) in terms of W (see the details in [37]).

It is also natural to enquire about connection of our model to the existing ballistic analogues
of the diffusive NLσMs, e.g. the models proposed in [6, 10, 23]. Note that the zero-dimensional
versions of these theories produce RMT, which makes the answer to this question important for
studies of truly ergodic systems. The construction involving diffuse boundary scattering ([10])
is essentially different from ours, because in [10] the electron loses memory after a single
boundary collision, while in our model, the WGM trajectories retain phase coherence until
the electron finally leaves the system. Our treatment is complementary (only in conceptual
sense) to that of [6, 23], in which only modes of Q inside the ballistic dot appear, and the
boundary value of Q is nonfluctuating. The zero-dimensional case Q(r) = const. inside the
dot (Q(θ) = const. in our case), i.e. the situation in which only lowest mode contributes,
seems to be the only possible connection between these models and ours. However, another
crucial difference between the two formulations is worth mentioning. The universal parameter
τ (mean free time between collisions) in the Muzykantskii–Khmelnitskii σ -model ([23]) is
angular momentum dependent in our case. In order to address this issue of zero-dimensional
correspondence between our result and those of [6, 23] one needs to carry out the calculations
for correlation function of a chaotic system at hand using the NLσM we derived and compare
it to the RMT result in the appropriate limit. This is a subject of ongoing work to be presented
elsewhere.

Finally, we hope to consider applications of our NLσM to the interacting-electron problem
in the future. One of the possible ways to take the interactions into account in diffusive and
ballistic systems with large dimensionless conductance is to use a ‘Universal Hamiltonian’
[34], which was shown to be the renormalization group fixed point for weak interactions
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[22, 35]. We hope to extend our analysis to the interacting ballistic case by using the large-N
approach of [22].
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Appendix A. Hubbard–Stratonovich decoupling

In this appendix, we derive the identity which decouples supervector variables in the action
averaged over γ̃n.

For arbitrary function V (u, z)I4 which does not possess any supersymmetric structure
and for two coordinate-dependent supermatrices Q(u, z) and A(u, z) which have the same
supersymmetric structure and, therefore commute, the following generalization of the
decoupling rule can be verified:∫

DQ exp

(
−Str

∫∫
αQV QV − iβQV AV

)
= exp

(
− β

4α

2

Str
∫∫

AV AV ,

)
(A.1)

where we skipped coordinate dependence on yn and y ′
n and corresponding differentials. First

of all, we make use of the theorem due to Parisi–Sourlas–Efetov–Wegner (see, for example,
[36]), which states that for any ‘invariant superfunction’ the corresponding superintegral is
equal to its value at the origin, which in our case is unity. By shifting Q �→ Q + iδA and
setting 2αδ − β = 0, we get

−α

∫
Cn

QV

∫
Cn

QV + iβ
∫

Cn

QV

∫
Cn

AV �→ −α

∫
Cn

QV

∫
Cn

QV − i (2αδ − β)

×
∫

Cn

AV

∫
Cn

QV = −α

∫∫
Cn

QV QV − β

4α

2 ∫∫
Cn

AV AV. (A.2)

Then, we carry out the Hubbard–Stratonovich transformation by applying equation (A.1)
from right to left to each of the terms in equation (10) (in our case −β2/4α = x2

nv
2
n/8

and V (yn, y
′
n) = ϕn(yn)ϕ

∗
n(y

′
n)). We choose α = m2/2, so that iβ = mxnvn/2 and get

equation (11).

Appendix B. Diffusion term

Approximating the Green functions G̃(r, R(s ′), s, s ′) and G(r, R(s ′), s, s ′) according to
equation (20) and h with its boundary value, we carry out r-integration with the help of
the identity ∫

Iα(z)Iβ(z)

z
dz = z

I ′
α(z)Iβ(z) − Iα(z)I ′

β(z)

α2 − β2

and get

Ft [δQ] = i

(
m2d

P

)2 ∑
l,n,p,q

∫ P

0
ds ′

∫ P

0
ds

x̃(s)̃x(s ′)g(s)Dp,q(g̃(s))λn

f (s)(λp + λq)

× exp

(
iλl

∫ s F (s)

R(s)
ds + iλn

∫ s ′
F(s)

R(s)
ds + i(λp + λq)

∫ s

s ′

F(s)

R(s)
ds

)
δQ

(t)
l δQ(t)

n ,
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where

Dp,q = 1/(jp,q/wp,q + if (s)̃g(s))

with

jp,q = f 2IλpF (g̃)IλqF (g̃) + g̃2I ′
λpF (g̃)I ′

λqF (g̃),

wp,q = IλpF (g̃)I ′
λqF (g̃) − I ′

λpF (g̃)IλqF (g̃).

where we omitted s-dependence for brevity in the last two lines; we continue to do that
throughout this appendix. Integration over s and s ′ in the above expression for Ft [δQ]
produces infinitesimally small result unless n + p + q = 0, l = −n. Anticipating these
averages we concentrate on the evaluation of the sum over p and q restricted by these two
conditions. Later on one can approximate Ft [δQ] by replacing the result of the summation
(together with the rest of the integrand) with its perimeter averaged value. With this in mind
we manipulate

∑
l,n,p,q into a double sum∑

l,n,p,q

DpqδQ
(t)
l δQ(t)

n �→
∞∑

l,n=−∞
D|n|,|l+n|δQ

(t)
l δQ

(t)
−l

�→ 2
∑
|l|

δQ
(t)
|l| δQ

(t)
−|l|

∑
|n|

(D|n|,|n|+|l| + D|n|,|n|−|l|).

The sum over |n| can be performed asymptotically in the limit: g̃(s) � 1, f (s)/g̃(s) ∼ 1
[32]. We convert this sum into the integral over the new variable

µ = 2π |n|F(s)

g̃(s)P (F/R)
,

use uniform expansion for the Bessel function Iλ|n|F(s)

(
λ|n|F(s)/µ

)
[33] and expand

j|n|,|n|+|l|/w|n|+|l| and j|n|,|n|−|l|/w|n|−|l| to the leading order in 1/̃g . We have∑
|n|

(D|n|,|n|+|l| + D|n|,|n|−|l|) = PF

2π

∫ ∞

0
dµ

(
1 − µ2 − 2µ4 + f 2

g̃2

)
λ2

n

g̃(1 + µ2)3/2
(
1 + µ2 + f 2

g̃2

)
− i

PF

2π

∫ ∞

0
dµ

(1 + f g̃)µ2λ2
n

g̃(1 + µ2)(f 2 + g̃2(1 + µ2))2
. (B.1)

Then, the first integral with respect to µ in equation (B.1) vanishes, while the second one
yields (π/4f 4g){(f 2 + 2g2)/

√
f 2 − g2 − 2g} after we substitute g̃(s) → −ig(s). To arrive

at equation (30) we drop some of the terms which are negligible in the above-mentioned limit.
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